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Malnutrition has been associated with a decrease in immune function. Impairment of immune function may lead 
to increased susceptibility to infection with viruses. Although there are many studies documenting the effect of 
host nutritional status on immune functions, fewer studies have examined the effect of host nutritional status on 
viral pathogenesis. This review examines the relationship between viral infection and the nutritional status of the 
host, and documents that not only can the nutritional status of the host affect immune function, but can have 
profound effects on the virus itself: One mechanism by which nutritional status affects the virulence of the viral 
pathogen involves selection for virulent viral genotypes. Other mechanisms remain to be elucidated. 0 Elsevier 
Science Inc. 1996 (J. Nutr. Biochem. 7:683-690, 1996.) 
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Introduction 

It has long been observed that the nutritional status of the 
host can affect the illness outcome as the result of a viral 
infection. 1,2 For example, rotavirus infection in well-nour- 
ished children leads to mild diarrhea. In contrast, malnour- 
ished children who are infected with rotavirus develop se- 
vere diarrhea; the mortality rate is high for these children. 
The association between famine and epidemics of infectious 
disease and high rates of mortality have been noted through- 
out history. 

The relation between nutrition and viral infection is pos- 
tulated to be caused by changes in immune function. That is, 
the nutritional deficiency impairs the immune response; 
therefore, exposure to virus results in increased susceptibili- 
ty to viral infection. This relationship can be depicted as: 

Deficient host nutrition + decreased host immunity -+ 
increased susceptibility to viral infection. 

However, recent data from collaborative studies between 
my laboratory and Orville Levander’s laboratory at the 
United States Department of Agriculture (USDA) have sug- 
gested that this unidirectional model of nutrition-virus in- 
teraction may not be adequate. In this review, I present a 
new paradigm to describe host nutrition and viral interac- 
tion. This review will not focus on the effect of nutrition on 
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immunity, as there are several excellent published reviews 
that already cover this area. ‘y4 Rather, this review will ex- 
amine the effects of host nutrition on specific viruses, using 
both human and animal studies. Although there are many 
studies examining the effect of nutrition on human immu- 
nodeficiency virus (HIV) infection, I will not cover HIV in 
this review, as this subject has recently been reviewed.5 

General malnutrition and viral infection 
As mentioned previously, rotavirus-induced diarrhea is 
much more severe in malnourished children as compared 
with well-nourished children.6.7 Rotaviruses are the major 
etiologic agents of serious diarrhea1 illness in infants and 
young children under 2 years of age. Although the fre- 
quency of rotavirus-induced diarrhea in developed countries 
is high, the mortality rate is low. In the United States, over 
1 million cases of severe diarrhea occur from infection with 
rotavirus each year, with up to 150 deaths attributed to the 
infection. In developing countries, over 125 million cases of 
rotavirus diarrhea occurs each year, with 18 million of these 
cases classified as severe, and an estimated 873,000 deaths 
occurring in infants and children under the age of 4. 

Acute respiratory tract infections (ARI) caused by vi- 
ruses are also more severe in malnourished individuals. AR1 
are responsible for 4.5 million deaths among children each 
year, predominantly in developing countries.8 Viruses are 
the dominant etiological agent for AR1 in developing coun- 
tries, and the most commonly isolated viruses are respira- 
tory syncytial viruses (RSV), followed by parainfluenza vi- 
ruses, influenza A and B viruses, and adenoviruses.9z’0 

Although there are a number of risk factors associated 
with an increase in severity and mortality due to AR1 in 
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developing countries, such as crowding, poor sanitation, 
low birth weight, parental smoking, etc., malnutrition 
clearly plays a major role. Malnutrition affects the host in a 
number of ways, including a diminished immune function, 
weakness in the muscles that control breathing, and changes 
in normal lung growth.3,“-‘4 A number of studies have 
shown that malnourished children (underweight) have an 
increased likelihood of developing pneumonia post infec- 
tion, as compared with normal-weight children,’ and in- 
creases in mortality from AR1 in malnourished children 
have also been documented.” Keusch” found that malnu- 
trition and respiratory disease often occur together in devel- 
oping countries, and that the immune defects induced by the 
malnutrition may affect vaccine responsiveness. 

Whittle and Greenwood16 studied 30 malnourished chil- 
dren and 25 well-nourished children for 31 days after the 
onset of a measles rash. At 3 1 days, the measles virus could 
be isolated in 40% of the malnourished children, but in none 
of the well-nourished children. The relationship between 
measles and vitamin A deficiency will be discussed further. 

A number of animal studies have examined the effect of 
both malnutrition and protein deficiency and its effect on 
host susceptibility to viral infection. Similar to what is 
found in humans, Riepenhoff-Talty et al.17X’8 found that 
undernourished mice infected with rotavirus develop more 
severe diarrhea, which persists longer when compared with 
well-nourished mice infected with rotavirus. Noble et al.19 
found that pups born to dams that had been fed either low- 
calorie or protein-deficient diets developed more severe di- 
arrhea when infected with rotavirus than pups born to dams 
fed adequate diets. 

Esa and Reissig2’ reported that a strain of mouse geneti- 
cally resistant to mouse hepatitis virus became susceptible 
to the virus when weaned on a low-protein diet. Transfer of 
spleen cells from well-nourished resistant mice to the sus- 
ceptible malnourished mice could restore resistance to the 
virus. 

Woodruff and Kilbourne” found that mice fed a protein- 
deficient diet developed more severe heart pathology when 
inoculated with coxsackievirus B3 as compared with well- 
nourished mice. The severity of the coxsackievirus B3- 
induced pathology was in general proportional to the sever- 
ity of the malnutrition. Price et al.-* and Teo et al.23 found 
that mice fed a protein-deficient diet had higher virus titers 
and increased lung pathology post murine cytomegalovirus 
infection. However, Pena-Cruz et al.24 found that mice fed 
protein-deficient diets were not more susceptible to respi- 
ratory syncytial virus infection. That is, the lung pathology 
and the virus titers recovered from the lungs of infected 
mice were identical between well-nourished and malnour- 
ished groups of mice. In contrast, malnourished mice in- 
fected with Sendai virus developed more severegathology 
and higher lung titers than well-nourished mice. Thus, it 
appears that malnutrition does not produce a uniform re- 
sponse to viral infections. 

The effect of nutrition on virus infection in mosquitoes 
mirrors what occurs in vertebrates. Grimstad and Haramis26 
found that female mosquitoes that had been reared under 
deficient dietary conditions were more susceptible to La 
Crosse virus. In addition, mosquitoes reared under deficient 
conditions were able to transmit more La Crosse virus dur- 

ing a blood meal than mosquitoes raised under optimum 
dietary conditions. This study demonstrates how nutrition 
affects not only the host, but viral vectors as well. 

Zinc deficiency and virus infection 

A number of studies have examined the effect of zinc de- 
ficiency on immune function (for a review, see Ref. 27). 
Fewer studies have examined the effect of a zinc deficiency 
on susceptibility to viral infection. Al-Nakib et a12’ dem- 
onstrated decreased clinical symptoms in volunteers given 
zinc gluconate lozenges before challenge with rhinovirus. 
Similarly, zinc gluconate lozenges provided to rhinovirus- 
infected volunteers once cold symptoms appeared also had 
reduced clinical symptoms when compared with the un- 
treated, rhinovirus-infected controls. 

In animal models, Singh et al.‘9 found that mice treated 
with zinc acetate survived for longer periods of time when 
infected with the yeast Candida albicans or with Semliki 
Forest virus. Steers fed diets with added zinc methionine for 
7 days before challenge with bovine rhinotracheitis virus 
had less severe symptomology than did infected steers fed 
normal diets.30,31 In contrast, work in vitro with a continu- 
ous cell line demonstrated that supplementation of the cul- 
ture with ZnSO, increased susceptibility of the cell line to 
infection with Autographa California nuclear polyhedrosis 
virus3* 

Vitamin A 

Vitamin A is perhaps the best studied nutrient with regards 
to viral infection. Recently, much attention has been fo- 
cused on the relationship between vitamin A deficiency and 
infection with measles virus. In developed countries, 
measles is generally a mild disease that rarely results in 
severe complications, such as encephalitis. Access to vac- 
cination against measles infection also reduces the inci- 
dence of disease in developed countries. However, in de- 
veloping countries, infection with measles often leads to 
what is termed “severe measles.” Children with severe 
measles develop a lower respiratory tract infection, which is 
associated with a high rate of mortality. Measles remains a 
major cause of mortality in children in developing coun- 
tries. 

Malnutrition had long been noted to be associated with 
severe measles.33 Further investigations led to the discovery 
that a deficiency in vitamin A often accompanied the de- 
velopment of severe measles.3”38 Double blind placebo 
studies were carried out in a number of developing countries 
with vitamin A.39-45 The majority of these studies found a 
significant decrease in pneumonia and a decrease in mor- 
tality associated with measles infection in children given 
vitamin A supplements, as compared with children given a 
placebo. These trials led the World Health Organization to 
recommend treatment of all measles virus-infected children 
in developing countries with vitamin A. It is also recom- 
mended that supplements of vitamin A be given at the time 
of vaccination for measles. However, some studies suggest 
that providing the vitamin A supplement at the time of 
vaccination reduces the efficacy of the vaccine.j6 

Studies in the United States have found that in 50% of 
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children infected with measles were vitamin A deficient.47 
Other studies have demonstrated that children in U.S. hos- 
pitals treated with vitamin A for severe measles have a 
shorter duration and less severe course of illness.48.49 This 
has led to Committee on Infectious Diseases of the Ameri- 
can Academy of Pediatrics to recommend vitamin A treat- 
ment for infants and children (up to age 2) hospitalized with 
severe measles.50 

Although the mechanism of potentiation of measles virus 
virulence in vitamin A-deficient children is not known, it is 
thought to be caused by decreased immunity.51 Increased 
levels of measles-specific IgG and increased total numbers 
of lymphocytes have been found in vitamin A-treated 
measles-infected children as compared with placebo treated 
measles-infected children. 52 A decrease in the immune re- 
sponse induced by a deficiency in vitamin A would, there- 
fore, allow the virus to replicate to higher virus titers and, 
thus, induce more severe disease. 

Deficiency in vitamin A has also been associated with 
increased severity of RSV infections3 RSV causes world- 
wide annual epidemics of lower respiratory tract illness and 
is the most important cause of viral-induced lower respira- 
tory tract illness. Several studies have found that children 
hospitalized in the U.S. with RSV-associated illness had 
decreased serum vitamin A levels.54,55 More severe disease 
was associated with the lowest levels of vitamin A. The 
vitamin A deficiency was not present before illness, sug- 
gesting that the viral infection itself is responsible for the 
decline in vitamin A levels. The mechanism of depletion is 
not known, but it may be due either to increased utilization 
of vitamin A during a viral infection, or a change in the 
distribution of vitamin A. A trial with oral vitamin A 
supplementation in children hospitalized with RSV infec- 
tion did not demonstrate any benefit as compared with pla- 
cebo-treated children. 56 However, the authors of the study 
suggested that several factors may have been involved in the 
inability to detect a benefit from vitamin A treatment in- 
cluding the dose given, the small size of the study, and the 
fact that the levels of vitamin A, although depressed, were 
not as depressed as levels seen in children in Africa with 
severe measles. 

In animal studies, rats deficient in vitamin A develop 
more severe herpetic keratitis when infected with herpes 
simplex virus, as compared with rats fed a diet adequate in 
vitamin A.57,58 Vitamin A-deficient mice infected with in- 
fluenza virus have decreased mucosal and serum antibody 
levels to influenza virus, although lung pathology and virus 
titers are not different between deficient and supplemented 
groups. 59.60 Vitamin A-deficient adult mice challenged with 
rotavirus also develop decreased antibody responses as 
compared with vitamin A-adequate mice.6’ However, be- 
cause adult mice do not develop diarrhea post rotavirus 
infection, it is not known how the vitamin A levels affect 
illness. 

Keshan disease 

Keshan disease is an endemic cardiomyopathy that was first 
described in Keshan County, Heilongjiang Province, North- 
east China in 1935. 62 The heart pathology is characterized 
by foci of necrosis throughout the myocardium and the le- 

sions can exhibit varying degrees of cellular infiltration and 
calciftcation.63 Keshan disease was predominantly found in 
women of childbearing age and post-weaned children. Dis- 
tribution of Keshan disease suggested an environmental fac- 
tor was involved, and further investigations led to the find- 
ing that the soils in Keshan disease endemic areas had low 
concentrations of the trace element, selenium (Se).64 Test- 
ing of individuals in Keshan disease endemic areas found 
low Se concentrations in both hair and blood. A random- 
ized, placebo-controlled treatment trial with sodium selenite 
found a significant drop in Keshan disease in the treatment 
group6’ when compared with the group receiving the pla- 
cebo. Therefore, all children at risk of Keshan disease were 
supplemented with sodium selenite. 

Although Keshan disease is essentially eradicated in 
China, there are aspects to the epidemiological pattern that 
suggest that an infectious agent, in addition to a Se defi- 
ciency, may be required for the development of Keshan 
disease. Keshan disease has a seasonal and annual inci- 
dence, and not every individual with low Se status devel- 
oped the disease. A number of enteroviruses, including cox- 
sackieviruses, have been isolated from blood and tissue 
samples from individuals with Keshan disease.66 A cox- 
sackievirus B4 isolated from a Keshan disease victim 
caused increased heart damage when inoculated into Se- 
deficient mice as compared with mice fed a Se-adequate 
diet.67 Using the polymerase chain reaction technique, Li et 
a1.68 found 87.5% of myocardial specimens from Keshan 
disease patients were positive for enteroviral RNA, whereas 
only 3% of controls were positive. Similarly, again using 
the polymerase chain reaction, Roath et a1.69 found that 30% 
of blood samples from Keshan disease victims were positive 
for enteroviral RNA. Taken together, these results suggest a 
possible role for enteroviruses in the etiology of Keshan 
disease. 

Coxsackieviruses, enteroviruses in the Picomaviridae, 
are known etiological agents of viral-induced myocarditis, 
or heart inflammation. To further investigate the role of 
coxsackieviruses and Se deficiency in Keshan disease, my 
laboratory, in collaboration with Orville Levander at the 
USDA, used a well-characterized murine model of coxsack- 
ievirus B3 (CVB3)-induced myocarditis. 

CVB34nduced myocarditis and Se deficiency 

To determine if a Se deficiency would affect the pathologi- 
cal outcome of an infection with coxsackievirus B3, we fed 
mice a diet adequate in Se (0.2 p$g) or deficient in Se (no 
Se added to the diet) for 4 weeks.’ At the end of the feeding 
period, mice were inoculated with a myocarditic strain of 
CVB3, CVB3/20. This virus has been cloned and se- 
quenced.” At 10 days post-inoculation, hearts from mice 
fed a diet adequate in Se had mild to moderate pathology. 
However, mice fed the diet deficient in Se had much more 
severe myocarditis. The heart lesions were larger and had 
more extensive regions of calcification than lesions in Se- 
adequate mice. Virus titers in the heart and liver were higher 
in the infected Se-deficient mice when compared with Se- 
adequate mice. Although both groups of mice were able to 
clear virus, viral clearance took longer in Se-deficient mice. 

In a second series of experiments,” we inoculated Se- 
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deficient and Se-adequate mice with CVB3/0, a strain of 
CVB3 that is normally avirulent in mice, although virus can 
be recovered from the heart tissue of infected, asymptomatic 
mice.73 CVB3/0-infected mice fed Se-adequate diets did not 
develop any myocarditis post-infection. However, mice fed 
Se-deficient diets developed moderate myocarditis. As 
found for CVB3/20, CVB3/0 virus titers were elevated and 
persisted longer in Se-deficient mice as compared with Se- 
adequate mice. 

To understand how the Se deficiency caused a change in 
the expression of virulence of the two CVB3 viruses, we 
examined various immune parameters. Nutritional deficien- 
cies have long been known to cause immune dysfunction, 
and a deficiency in Se has been found to increase suscep- 
tibility, due to immune suppression, to parainfluenza 3 virus 
in lambs74 and infectious bovine rhinotracheitis virus in 
steers.75 

Neutralizing antibody titers at 14 days post-infection 
were equivalent between Se-adequate and Se-deficient 
mice. However, splenic T cell proliferation against both 
mitogen and CVB3 antigen were depressed in the Se- 
deficient mice. Natural killer cell activity was not affected 
by the Se deficiency. Thus, it appeared that the immune 
system was negatively affected in the Se-deficient animals. 
Using the unidirectional model presented in the Introduc- 
tion, our results suggest that the Se-deficiency impaired the 
immune system of the host such that the CVB3 virus could 
now cause increased pathology in the compromised host. 
However, a second alternative was conceivable. Was it pos- 
sible that the virus itself had changed its phenotype as a 
consequence of replicating in a Se-deficient host? 

To test this hypothesis, we inoculated Se-deficient mice 
with CVBYO virus.76 Seven days later, virus was isolated 
from the hearts of the infected mice and renamed CVB3/ 
OSe-, to reflect the host the virus was isolated from. As a 
control, the virus was also isolated from Se-adequate mice, 
and renamed CVB3/0Se+. These isolated viruses were then 
passed into Se-adequate mice. If the unidirectional model 
was correct, then the hearts from the Se-adequate mice in- 
oculated with the CVB3/0Se-virus should not develop le- 
sions. However, if the virus phenotype had changed, then 
disease should be present in the CVB3/0Se-inoculated ani- 
mals. We found that Se-adequate mice inoculated with 
CVB3/0Se- virus developed moderate myocarditis, where- 
as Se-adequate mice inoculated with CVB3/0Se+ virus did 
not develop any disease. Thus, the viral passage experi- 
ments demonstrated that the viral phenotype had been al- 
tered: CVB3/0 virus changed from avirulent to virulent as a 
consequence of replicating in a Se-deficient host. 

To determine if the phenotype change was due to a 
change in the viral genome, CVB3/0 (the input strain), 
CVB3/0Se-, and CVB3/0Se+ viruses were sequenced.76 
The genomic sequence of CVB3/0Se+ was found to be 
identical to CVB310. However, CVB3/0Se- differed from 
CVB3/0 at six nucleotide positions: nucleotide numbers (5’- 
3’) 234, 788, 2271, 2438, 3324, and 1334 (See Table 1). 
There are seven known differences in the genome between 
CVB3/0 and known myocarditic strains of CVB3. All six of 
the nucleotide changes found in CVB3/0Se- are identical to 
the nucleotides found in the myocarditic strains. Nucleotide 
2690, which is different between CVB3/0 and myocarditic 

Table 1 Nucleotide and corresponding amino acid differences be- 
tween the avirulent CVBSIO and the virulent CVB3/0Se- viruses and 
comparison with CVB3/20 (virulent) strain 

Nucleotide CVB3 Strain 
Number Amino acid 
(5’-3’) CVB3/20’ CVB3/0’ CVB3/OSe-’ change 

234 

788 
2271 
2438 
2690 
3324 
7334 

T C T Non-translated 
region 

A G A Arg -+ Gly 

z 
A 

& 
Phe -+ Tyr 

G Gln + Glu 
A 

: 
G None 

T T Val -+ Ala 
T C T Non-translated 

region 

‘CVB3/20 and CVB3/0 are cloned and sequenced strains of CVBB. 
We sequenced the CVBS/O preparation used to inoculate both Se- 
deficient and Se-adequate mice. CVB3/20 is a myocarditic strain. 
CVB3/0 is an amyocarditic strain. 
‘CVB3/0Se- virus was isolated from the heart of a Se-deficient 
mouse inoculated with CVBS/O. The same pattern of nucleotide 
changes was identified in three other virus isolates. These viruses 
are myocarditic when inoculated into Se- and vitamin E-adequate 
mice. 

strains, was not changed in the CVB3/0Se- virus. Thus, the 
myocarditic CVB3/0Se- strain was found to be a hybrid 
between known myocarditic strains and the amyocarditic 
CVB3/0. The specific nucleotides important for the change 
to the virulent phenotype have not been identified. How- 
ever, this model presents an excellent opportunity to exam- 
ine the relationship between nucleotide sequence and viru- 
lence. 

CVB34nduced myocarditis and vitamin 
E deficiency 

Because many of the individuals living in Keshan disease 
endemic areas were of marginal vitamin E status, and be- 
cause vitamin E and Se can spare one another’s activities, 
we also infected vitamin E-deficient mice with CVB3.77 

Similar to what we found with Se-deficient mice, vitamin 
E-deficient mice also developed much more severe myocar- 
ditis when infected with the myocarditic strain, CVB3l20, 
when compared with vitamin E-adequate animals. Of par- 
ticular interest, when menhaden oil is substituted for lard as 
a fat source, heart damage in infected mice is increased 
when compared with infected mice fed lard-based vitamin 
E-deficient diets. 

Infection of vitamin E-deficient mice with the normally 
benign CVB3/0 strain results in myocarditis, similar to the 
pathology seen in CVB3/0-infected Se-deficient mice. Se- 
rum neutralizing antibody responses are not affected, al- 
though spleen cell proliferative responses to both mitogen 
and antigen are decreased, similar to what was seen with the 
Se-deficient mice. 

Because both Se and vitamin E act as antioxidants, al- 
though by two very different mechanisms, a common 
mechanism of increased oxidative stress in the host seemed 
a likely explanation for the increased virulence of the CVB3 
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Thus, the change in genotype of the CVB3/0 virus in the 
Se-deficient mice may be due to selection of a new consen- 
sus sequence. That is, the Se-deficiency allowed for the 
pre-existing mutant virus to outcompete the previous con- 
sensus sequence, either due to a faster replication rate, or an 
increase in fitness. Two possible mechanisms may operate 
in the Se-deficient or vitamin E-deficient animal that alter 
the pattern of quasi-species evolution. One possibility is that 
the same mechanism of oxidative stress damage to cellular 
DNAs4 also operates on replicating RNA genomes. Se is an 
essential co-factor for glutathione peroxidase, an enzyme 
important in limiting oxidative stress in the host. Vitamin E 
acts as a free radical scavenger. Thus, the pro-oxidant/ 
antioxidant balance is shifted towards pro-oxidant in the Se- 
or vitamin E-deficient host. This increase in oxidative stress 
may then lead to direct damage of the RNA genome, in- 
creasing the mutation rate. 

A second possibility is that the nutritional deficiency led 
to an impairment of the immune system. A number of nu- 
tritional deficiencies, including Se and vitamin E, leads to 
impaired immune responses.3 Indeed, our study found a 
decrease in T cell reactivity against both mitogen and spe- 
cific viral antigen in Se-deficient or vitamin E-deficient ani- 
mals. This impairment in immune function may lead to 
increased virus titers, and therefore, an increased probabil- 
ity of generating viral variants with new pathogenic poten- 
tial. The impairment of immune function may be due to 
increased oxidative stress in the deficient host. Lipid per- 
oxidation of immune cell membranes may lead to decreased 
activity. HzO, can permeate cells and inhibit adenosine tri- 
phosphate (ATP) synthesis. Thus, generation of oxidants in 
a Se or vitamin E-deficient animal could damage immune 
cells, leading to impaired function. 

These results demonstrate for the first time that a specific 
nutritional deficiency in the host can alter the genotype of a 
virus, thereby resulting in a more virulent pathogen. If these 
findings are generalizable to other RNA viral infections and 
other nutrients, then the nutrition of the host should be 
considered when any viral disease shows unexpected prop- 
erties. For example, influenza pandemics often originate in 
China, which has widespread areas of Se deficiency. Human 
immunodeficiency virus is thought to have originated in 
Africa, by introduction of virus from a primate population 
into humans.85~86 Africa also has areas of Se-deficiency.87 

Based on our work, the unidirectional model of host 
nutrition-virus infection should be modified. The following 
model may be more appropriate: 

inadequate host nutrition 
1 .L 

dysfunctional host immunity * virus 
1 

enhanced susceptibility to virus 

This relationship demonstrates the affect of nutrition both 
on the host and the pathogen. As illustrated above, inad- 
equate host nutrition can not only result in immune dys- 
function in the host which may lead to increased suscepti- 
bility to viral infection, bu, can directZy affect the virus 
itself. Once the viral genome has been altered, it can now 
affect not only nutritionally deficient populations, but well 
nourished populations as well. 

viruses. To further test this hypothesis, we fed mice one of 
three diets: 1) adequate in vitamin E, adequate in Se; 2) 
deficient in vitamin E, adequate in Se; 3) deficient in vita- 
min E, adequate in Se, with the addition of N,N’-diphenyl- 
p-phenylenediamine (DPPD). DPPD is a synthetic antioxi- 
dant structurally unrelated to vitamin E, which mimics its 
antioxidant properties. Serum o-tocopherol levels were de- 
pressed in the mice fed a vitamin E-deficient diet (0.6 kmol/ 
L) as compared with mice fed vitamin E-adequate diets (4.5 
+/- 0.1 kmol/L). Mice fed vitamin E-deficient diets supple- 
mented with DPPD also had low serum o-tocopherol levels 
(0.8 +/- 0.1 p,mol/L). When the mice were infected with 
CVB3/20 virus, DPPD-supplemented diets prevented the 
enhancement of myocarditis due to the vitamin E defi- 
ciency. 

All of our observations can be readily rationalized on the 
basis that increased oxidative stress in the host increases 
myocarditis induced by CVB3 infection: I) Se deficiency 
increases the pathology of CVB3-induced myocarditis; 2) 
vitamin E deficiency increases the pathology of CVB3- 
induced myocarditis; 3) consumption of peroxidizable fat 
(menhaden oil) increases the pathology of CVB3-induced 
myocarditis, and 4) DPPD prevents the increase in pathol- 
ogKte to vitamin E deficiency. In addition, Hiraoka et 
al. ’ demonstrated protection against CVB3-induced 
myocarditis when mice are treated with superoxide dismu- 
tase. 

Viral passage experiments with virus obtained from vi- 
tamin E-deficient mice also demonstrated the same nucleo- 
tide changes as for virus recovered from Se-deficient ani- 
mals. This suggests a common mechanism of increased mu- 
tation in the deficient animals, which may be increased host 
oxidative stress. The fact that the changes in the virus were 
identical between vitamin E and Se-deficient mice suggests 
that the increase in virulence of the virus may reside in only 
a few nucleotide positions. 

Viral quasi-species and nutritional status of 
the host 
What is the mechanism for the change in viral genotype that 
occurs during replication in either a Se-deficient host or a 
vitamin E-deficient host? There are several possibilities. 
Like other RNA viruses, coxsackievirus has a high rate of 
mutation. Mutation rates of RNA viruses are in the range of 
10m3 to 10e5 substitutions per copied nucleotide. This rate is 
at least lo3 fold larger than the mutation rate for cellular 
DNA.80*81 The high mutation rate of RNA viruses is due to 
the RNA replicase lacking efficient proofreading and post- 
replicative repair activities.82’83 It has been suggested that 
RNA viruses replicate near the minimal fidelity compatible 
with maintaining their genetic information.80-83 However, 
not all mutations will be viable, because the success of a 
mutation depends on its ability to complete an infectious 
cycle and its overall fitness. Therefore, in an individual 
virus population, individual genomes that differ in one or 
more nucleotides will form the average or consensus se- 
quence of the population. Thus, viruses exist as populations, 
or swarms of mutants, which has been termed quasi- 
speciess3 Thus, quasi-species are enormous and dynamic 
mutant distributions that have great adaptability. 
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Concluding remarks 

It has been known for many years that nutritional status of 
the host can affect immune function. Both in vitro and in 
vivo studies have demonstrated that many immune func- 
tions are affected by either malnutrition or a single nutrient 
deficiency. It has commonly been assumed that any pertur- 
bation of the host immune system caused by inadequate 
nutrition would increase susceptibility to infectious disease. 
However, compared with studies examining the effect of 
nutrition on immune function, there are fewer studies docu- 
menting the effect of host nutrition on viral pathogenesis. 

This paper has reviewed studies that examined the ef- 
fects of various nutritional deficiencies on viral pathogen- 
esis and induction of illness. On a mechanistic level, our 
current understanding of host-nutrition-virus infection inter- 
action is inadequate. Host nutrition could affect 1) host cells 
by changing their vulnerability to virus infection, 2) host 
immune system, or 3) the virus itself. Further research is 
needed to address and clarify these relationships. 

Collaborations between nutritionists and virologists, 
groups with seemingly divergent interests, are required to 
elucidate the relationship between nutrition and viral infec- 
tion. Fostering this interdisciplinary research will advance 
the newly emerged area of “nutritional virology.” 
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